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Rayleigh-Benard convection in a homeotropically aligned nematic liquid crystal
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We report experimental results for convection near onset in a thin layer of a homeotropically aligned
nematic liquid crystal heated from below as a function of the temperature diffeteficand the applied
vertical magnetic fieldH. When possible, these results are compared with theoretical calculations. The experi-
ments were done with three cylindrical cells of aspect rdticadiug/(heighy] I'=10.6, 6.2, and 5.0 over the
field range 8sh=H/H <80 (H-=20.9, 12.6, and 9.3 G are the Edericksz fields for the three céllsVe
used the Nusselt numbgr (effective thermal conductivityto determine the critical Rayleigh numb@g and
the nature of the transition. We analyzed digital images of the flow patterns to study the dynamics and to
determine the mean wave numbers of the convecting stateh.|€ss than a codimension-two fighd=46 the
bifurcation is subcritical and oscillatory, with traveling- and standing-wave transients. Béyptig bifurca-
tion is stationary and subcritical until a tricritical fiehg=57.2 is reached, beyond which it is supercritical. We
analyzed the patterns to obtain the critical wave nuni@easnd, forh<h., the Hopf frequency.. In the
subcritical range we used the early transients towards the finite-amplitude state for this purpose. The bifurca-
tion sequence as a function bffound in the experiment confirms the qualitative aspects of the theoretical
predictions. Even quantitatively the measurement®of k., and( . are reproduced surprisingly well con-
sidering the complexity of the system. However, the valubfs about 10% higher than the predicted value
and the results fok, are systematically below the theory by about 2% at simalhd by as much as 7% near
hy. At hy, k¢ is continuous within the experimental resolution whereas the theory indicates a 7% disconti-
nuity. The theoretical tricritical fielm{hz 51 is somewhat below the experimental one. The fully developed
flow aboveR, for h<h. has a very slow chaotic time dependence that is unrelated to the Hopf frequency. For
h<h<h, the subcritical stationary bifurcation also leads to a chaotic state. The chaotic states persist upon
reducing the Rayleigh number beld®y, i.e., the bifurcation is hysteretic. Above the tricritical fidid, we
find a bifurcation to a time independent pattern which within our resolution is nonhysteretic. However, in this
field range, there is a secondary hysteretic bifurcation that again leads to a chaotic state observable even
slightly belowR, . We discuss the behavior of the system in the high-field limit, and show that at the largest
experimental field valueR, andk. are within 6% and 1%, respectively, of their values for an infinite field.
[S1063-651%98)00511-X

PACS numbds): 61.30~v, 47.54+r, 47.20Bp

I. INTRODUCTION zontal layer of shomeotropicallyaligned NLC in a vertical

o _ _ _ ~ magnetic field H=He,) and heated from below. In that
Convection in a thin horizontal layer of an isotropic fluid ST - .

- case,Q=Qe, is parallel ton when the system is in the
heated from below by a heat curreQtis well known as  conqyction state. At a critical temperature difference
Raylelg?-l?lz_@a_rg con;/elc\:ltll_%r(Rtﬁ_C) [ﬁ,Z]. When the flltu'd ('js_ AT, (H) the fluid will undergo a transition from conduction
ﬁ]?ee;;n;i:qc '3\:; ;;{S:I(ILC nzé)lelzsulloeseg(r)énﬁ)mon Ifogliﬁgeotr to convection. The precise value AfT.(H), the nature of

g ways.a). 9. h_the bifurcation atAT.(H), and the pattern-formation phe-

jects that are orientationally ordered relative to their neig o
bors, but whose centers of mass have no positional orddjomena beyond T(H) are expected to depend in interest-
' dng ways uporH [7-10].

[4,5]. The axis parallel to the average orientation is called th )
A feature common to the homeotropic NLC and to an

director n. By confining the NLC be_tween two prpperly isotropic fluid heated from below is that the system is isotro-
treated parallel platg$], one can obtain a sample with uni- ~.~". . ;
pic in the horizontal plane. Thus the convection pattern may

form planar(parallel to the surfaces, i.e., in tlkey plane or f ith f bei : 0 ticular hori
homeotropidperpendicular to the surfaces, or parallel to the orm With no preference being given to a particuiar horizon-
tal axis unless the experimental apparatus introduces an

z-axis) alignment ofn. The alignrrJent can be reinforced by asymmetry. In both cases, the convection is driven by the
the application of a magnetic field parallel to the intended  y,pyancy force. However, the mechanism in the NLC case is
direction ofn. This is so because the diamagnetic susceptimore involved[7—9]. The usual destabilization due to the

bility is anisotropic, usually being larger in the direction par- thermally induced density gradient is opposed by the stiff-
allel to the long axis of the molecules. The phenomena thagess of the director field, which is coupled to and distorted
occur near the onset of convection depend on the orientatioy any flow. Since relaxation times of the director field are
of n andH [3]. In this paper we are concerned with a hori- much longer than thermal relaxation times, it is possible for
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director fluctuations and temperature or velocity fluctuationgively small H that terminates in a codimension-two point
to be out of phase as they grow in amplitude. The existencéCTP). The CTP is located at a slightly higher field than the
of two very different time scales and this phase shift typi-theoretical prediction. We measured the Hopf frequency
cally lead to an oscillatory instabilityalso known as over- w.(H) from visualizations of the spontaneous small-
stability), i.e., the bifurcation at which these time-periodic amplitude early transients just abowel .. Except for the
perturbations acquire a positive growth rate is a Hopf bifur-influence of the small shift of the CTP, we foumg(H) to
cation[7,8,11. This case is closely analogous to convectionbe in quantitative agreement with the theory. From these
in binary-fluid mixtures with a negative separation ratiotransients, we also determined the critical wave vector
[12,13. In that case, concentration gradients oppose convede,(H), and found it to be typically a few percent smaller
tion, and concentration diffusion has the slow and heat difthan the theoretical value. The reason for this small differ-
fusion the fast time scale. As in the binary mixtures, theence between theory and experiment is not known. As re-
Hopf bifurcation in the NLC case is subcriticEd,10]. For  ported previously[14], we found the convecting nonlinear
the NLC the fully developed nonlinear state no longer is timestate forAT aboveAT, to be one of spatiotemporal chaos
periodic. Instead, the statistically stationary state above th?STC). Except at very sma, its characteristic wave num-
bifurcation .is one of spatiotemporal chaqs with a typical timep o \was smaller thak, and insensitive tH and AT. A
scale that is about two orders of magnitude slower than thﬁ)ng-time average of the structure factor of this state was

theorencal inverse Hopf frequengg4]. However, it is POS™ consistent with the expected rotational invariance of the sys-
sible to actually measure the Hopf frequency by looking attem. Depending orH, the lower limit AT, at which this

the growth or decay of small perturbations that are either : : : -
deliberately introducefd] or that occur spontaneously when chaqtlc state made its hysteretic transition back to the con-
the system is close to the conduction state and near the piuction state was found to be 10 to 25% belBy(H). The

furcation point. conyecuye he{:lt transport was con5|ste_n'g W|th that of an iso-

A linear stability analysis of this system was carried out!OPIC fluid with ‘an average conductivity given by
by several investigatori8,15—17. A very detailed analysis — (2A1+Aj)/3 whereh, and) are the conductivities per-
was presented by Feng, Decker, Pesch, and KrgRi2PK)  pendicular and parallel ta, respectively. This suggests a
[10]. These authors also provided a weakly nonlinear analythorough randomization of the director orientations by the
sis, which allowed the distinction between subcritical andflow.
supercritical bifurcations. Quantitative bifurcation diagrams Beyond the CTP we found a subcritical stationary bifur-
were predicted for the nematic liquid crystal MBEN-(p-  cation, as had been predictglD]. The finite-amplitude state
methodxylbenzylidingp-butylaniling. In the present work that evolved was also a state of STC, but beyond a certain
we repeated and slightly extended the calculations for théeld value greater thaH it had distinctly different proper-
material 5CB (4-n-pentyl-4’-cyanobiphenyl (see beloyw ties from the chaotic state at lowet. This difference was
used in our experiments. Since the material parameters @learly evident from a discontinuitias a function o) of
MBBA and 5CB are similar, we found qualitatively the same the characteristic wave number of the nonlinear state, which
bifurcation sequences as a function of the field. Here wevas larger at the larger fields. There is no theoretical guid-
outline briefly the theoretical results and their relationship toance for the interpretation of these experimentally observed
our experimental results. phenomena.

As the magnetic field is increased, a subcritical Hopf bi- The rangeH=H, was investigated for two cells with as-
furcation line is expected to terminate af, in a  pectratiod’=6.15 and 5.01. We refer to them as cells 5 and
codimension-two poinfCTP) beyond that the perturbations 6, respectively(for details see Sec. Il belowWe found a
which first acquire a positive growth rate are at zero fre-primary bifurcation to a state with laexagonaflow pattern.
guency. Close to but beyond the CTP this stationary bifurcaWithin our resolution this bifurcation was nonhysteretic and
tion is predicted to also be subcritical. At an even higherthe Nusselt numbe/ grew continuously from zero. The
field H, a tricritical point(TCP) is predicted to exist beyond appearance of hexagons rather than rolls is attributable to
which the primary bifurcation is expected to become supernon-Boussinesq effec{d8,19, which occur when the up-
critical. To our knowledge there are no predictions about thelown symmetry is lifted by variations of the fluid properties
patterns that should form beyond either the subcritical Hopbver the cell height. Theoretically the bifurcation to hexa-
bifurcation below the CTP or the subcritical stationary bifur- gons is transcritical, and there should also be hysteresis as-
cation between the CTP and the TCP. Although there are nsociated with it. However, the hysteresis is often so small
explicit predictions of the patterns fét>H,, in analogy to  that it is unobservable even though hexagons are found over
isotropic fluids one might expect convection rolls above thea substantial rangg21]. At sufficiently largeAT/AT, the
supercritical bifurcation, unless non-Boussinesq effectdiexagons become unstable with respect to {di§. Since
[18,19 yield a transcritical bifurcation to hexagons. AT, decreases with the cell thicknedg~d~3), the range

The phenomena described above were previously exef stability of hexagons should depend on the thickness of
plored only partially by experiment. Except for recent mea-the fluid sample. However, for thiinner fluid layer of cell
surements at relatively small field44], the experiments 5, the existence range of hexagons was limited by a different
have been qualitative or semiquantitatiy®,20]. In the secondary instability and grew from zero very near the TCP
present paper we report the results of an extensive sytematio e=AT/AT.—1=0.1 at the highest fields available to us.
experimental investigation of this system, which covered &t this stability limit a hysteretic transition yielded the cha-
wide range of magnetic fieldd. In agreement with previous otic state, and stationary rolls were never found. With de-
work [9,20], we find a subcritical Hopf bifurcation at rela- creasingAT, the chaotic state persisted downAd g some-



PRE 58 RAYLEIGH-BENARD CONVECTION IN A ... 5887

what smaller thamA T . For the thicker fluid layer of cell 6, that AT.,= a few °C dictates that the sample thickness
typically AT, was about 2°C, and hexagons were foundshould be a few mm. Typical values bff- are 10 to 20 G.

only up to e=0.015 even at high fields. Far>0.015, a  Thus modest fields of a kGauss or so are adequate to explore
pattern of rollsnot exhibiting STC was observed, as eX- the entire range of interest.

pected for a weakly non-Boussinesq system. At even higher |5 order to evaluateR, from AT., h=H/Hg, and the

e and consistent with the measurements in cell 5, a hysteretigeoretical values foR.(h),k.(h), andw.(h), we used the

secondary bifurcation again yielded the chaotic state. material properties given in Ref22]. We followed closely
the calculational methods of FDPK. In order to ensure a
Il. PARAMETER DEFINITIONS AND VALUES sufficient resolution of any boundary layers we used Cheby-

heff modes in the Galerkin meth@do more than 20 were

The quantitative aspects of the instabilities are determine .
X . equired.
by four dimensionless parameters that are formed from com-
binations of the fluid propertie§22]. They are[10] the

Prandtl number Ill. EXPERIMENTAL APPARATUS AND SAMPLE

PREPARATION
o= (a4l2) , (1) The apparatus used in this work was described previously
PK| [23,14). We made measurements using three circular cells of

. . . . different thicknesses, identified as cells 4, 5, arj@4. The
the ratio between the director-relaxation time and the heatyickness and radius werg=3.94 mm, r=41.9 mm for
diffusion time cell 4, d=6.60 mm, r=40.6 mm for cell 5 andd
(aal2)k =8.88 mm,r=44.5 mm for cell 6. The corresponding ra-
F= 4—”, 2 dial aspect ratio¥'=r/d were 10.6, 6.15, and 5.01. The fluid
Kas was (5CB). All experiments were performed at a mean tem-
perature of 25.6°C. The vertical thermal diffusion time was
t,=139, 383, and 694 s, ard- was 20.1, 12.6, and 9.34 G
agpd3AT for cells 4, 5, and 6, respectively. Despite the longer time
=, (3)  scales involved for experiments in the thicker cells, cells 5
(@al2)x and 6 had an advantage over cell 4 due to the smaller field
strengths and temperature differences required to perform the
measurements. To ensure homeotropic alignment near the

the Rayleigh number

and the dimensionless magnetic field

h=H/H, (4) surfaces of the top and bottom plates of both cells, a surface
treatment with lecithirj6,14] was applied.
with the Efedericksz field Defect-free homeotropic samples were prepared by apply-
ing a magnetic field while cooling the bath, and thus the
7 [Kas sapphire top plate of the sample, from above the isotropic-

Fd Voxa

(5)  nematic transition temperatuf®,, to T<Ty,. During this
process, the bottom plate naturally lagged behind, and thus
In these equationa, is one of the viscosity coefficientg; ~ an adverse density gradient existed. In the nematic-isotropic
is the thermal diffusivity parallel tah, ka3 is one of the two-phase region even thg relat|vely small thermal gradients
elastic constants of the director fielg, is the anisotropy of associated with small cooling rates induced convedtits).

the diamagnetic susceptibility; is the isobaric thermal ex- ?glgfg ;h:e(r::agtlilcnga%ai;witLagg‘ei?g vt\?heicgerlgr;%?ngg?r"otzti
pension coefficient, and is the gravitational acceleration. P '

The time scale of transients and pattern dynamics is meag}/ #3297 Cg\?e”rngt’hreat?esng); elr;tclj/r 20%252? gée:ts:n;fooc{:a(field
: ep T = N
sured in terms of the thermal diffusion time =35.1°C) and annealing at 34 °C for an hour or two the
t,=d%x|. (6)  defects healed and a defect-free homeotropic sample could
be prepared. Further cooling could then be at least ten times
Both h andR are easily varied in an experiment, and may beas rapid without introducing new defects because the thresh-
regarded as two independent control parameters. The avaipld for convection in the nematic phase is large. Before each
ability of h in addition toR makes it possible to explore an experimental run, the procedure was repeated.
entire line of instabilities. The parametefs o, andt, are The critical temperature differences for the onset of con-
essentially fixed once a particular NLC and temperature/ection were determined from heat-transport measurements.
range have been chosen, and even between different NLGdese are usually expressed in terms of the Nusselt number
there is not a great range at our disposal. For 5CB at 25.6° N=Nee /N @
(the material and mean temperature used in this yyoxle off 2
have c=263 andF=461. The value of, is typically sev- where\ is the conductivity of the homeotropically aligned
eral minutes, but depends on the thickness of the fluid layesample[23], and
It is given in the next section for each of our cells. The Ny=— QU/AT %)
critical valueR;(h) of R and the fluid parameters determine eff
the critical temperature differenc&T, for a sample of a is the effective conductivity and contains contributions from
given thicknessd. The realistic experimental requirement diffusive heat conduction and from hydrodynamic-flow ad-
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13k ...oo' i FIG. 2. Critical Rayleigh numbers for the onset of convection as
3 ..o'. a function ofh?. Open and filled symbols were obtained in cells 4
E12} o® 1 and 5, respectively. The line is the theoretical prediction.
P4
211} | 1 -
é \ AT. For the lower fields [§<20) N decreased below one
1 [eeeee00e - - - - --—------- 000~ - - - -1 when convection started. This can be understood because the
05 . ‘ ‘ . ‘ ‘ ‘ convecting sample has a distorted director with a component
42 44 468 48 5 52 54 56 58 perpendicular t&. The contribution from this component to
AT(°C) the conductivity corresponds to, , which is less than the

FIG. 1. Examples of the Nusselt number as a functiod dffor conductivity\ | of the homeotropic cage3]. It turns out that
cell 5. The upper figure is foh=15 and the lower one is foh ¢ gma)| fields the direct hydrodynamic contribution to the
=50. Open circles were taken with increasing and solid circles Wltl"heat flux is smaller than the decrease in the heat flux due to
decr_ea;ing&T. The transitions between conduction and (:onvectionthe director distortion by the flow. For the higher fields (
are indicated by the arrows. >35), N remained above one in the convecting state. Thus

) o with the higher fields the hydrodynamic contribution to the

vection. Measurements of were made by determining the heat flux is greater than the decrease in the heat flux due to
heat currenQ required to hold\T constant. AteacAT, the  any distortion of the director. Both examples in Fig. 1 dem-
heat current and temperature of the bath and bottom platgnstrate the predicted and previously obsefigi4,2q hys-
were measured at 1 min intervals for three to five hourseretic nature of the bifurcation, i.e., aT was decreased,

when typically all transients had died out. . the conduction state was reached at a valud Bfequal to
In addition to heat-flow measurements, we also V|sual|ze%-|—s<A-|—C_

the convective flow patterns. The homeotropic samples were Erom data like those in Fig. 1, critical temperature differ-

translucent even fod as large as several mm. It was just encesa T, were determined with an uncertainty of less than
about possible to see features of the bottom plate in typicaje; The corresponding Rayleigh numbers are shown in Fig.
ambient lighting. Any director distortion by convection rolls 5 o< 5 function oh2. The open circles were obtained in cell
or domain walls generated opaque regions with enhanceg e filled ones in cell 5. The good agreement between the
diffuse scattering, which were easily visible. It should be,q gata sets confirms the expected scaling of the field with
kept in mind that the optical signal in the images has a comyy |t 4150 shows that using the fluid properties at the mean
plicated relationship to the hydrodynamic flow fields, andtemperature does not lead to systematic erroR,ieven for
that quantitative information about velocity- or temperature-.|; 4 \whereAT.. is over 10 °C. One sees thy is quadratic
field amplitudes could not be obtained. Such quantities as the, |, smallh, ;s is expected because the system should be
wave vector of the paftterns or frequenme_s of travel'.nginvariant under a change of the field direction. The solid line
convection-rolls could of course be determined quantitaty) s the theoretical prediction and agreement between

t'vglbr/]' | iluminated f b b reul theory and experiment is excellent.
€ sampies were liuminated from above Dy a Cireular — peagits forR. over our full experimental field range are

fluorescent light. Digital images were taken from above by &hown as a function oh in Fig. 3. Here we include data

video camera, which was interfaced to a computer. Typically[aken with cell 6 as open squares. The dataRpreveal a
50 to 200 images were averaged to improve the signal-toz

. . . - ._~sharp maximum ah=44.3. We interpret this field value as
noise ratio. Averaged images were divided by an appropriatg . imension-two poirtt,, and indicate it in Fig. 3 by the
reference image to reduce the influence of lateral variation o

T i o . UONFashed vertical line. The solid line in the figure is the theo-
in illumination and of other optical imperfections. Some im-

a0es were processed further by filtering in Fourier space retical prediction forR;, evaluated for the properties of our
9 P y 9 pace. sample. For the entire rande<h, the theoretical result is

in excellent agreement with the data. However, the theory
IV. RESULTS givesh,=41.8, which is slightly lower than the experimen-
tal value. Aboveh, the measurements &, are systemati-
cally larger than the calculation, although the largest discrep-
Figure 1 shows\V for cell 5 as a function ofAT for two  ancy is only about 4%.
field strengthsh=15 andh=50. The open circles were ob- The triangles in Fig. 3 show the lower limit of existence
tained with increasing, and the solid circles with decreasindthe “saddle-node” Rayleigh numbeR;) of the finite-

A. Nusselt numbers and critical Rayleigh numbers
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FIG. 3. Critical Rayleigh numbeR; and saddle-node Rayleigh
numbersRy over the experimentally accessible field range. The
open circles, filled circles, and open squares Rydor cells 4, 5,
and 6, respectively. The open and filled trianglesRydor cells 4
and 5, respectively. The dashed line indicates the location of the
codimension-two point as found experimentally. The solid line is
the theoretical prediction foR,. The plusses ah=35 were ob-
tained with short equilibration times and cell$ee text FIG. 5. A sequence of images of the travelling or standing wave

transients forh=32 ande=0.015 in cell 5. The number in each
amplitude convecting state as determined from data likémage corresponds to the time, in unitstgf, that elapsed since
those in Fig. 1. They suggest that the tricritical bifurcation isflow first became visible. A time series of the pixel intensity was
located neah=59, which is larger than the theoretically taken at the location marked in the top left image.
calculated valud,=51. However, we will return later to the
best estimate o, . longer equilibration times. Thus we have no explanation for

Measurements similar to those shown in Fig. 3 were madene difference between the SF data Ryrand the theoretical
by Sala and Fernadez-Vela[20] (SF), using the nematic curve. However, the agreement between our runs with the
liquid crystal MBBA. Their results are shown in Fig. 4, to- different equilibration times implies that our usual experi-
gether with the theoretical curve for that c486]. The data  mental procedure yielded quasi-static results.
and the curve illustrate that there are significant quantitative
differences between the bifurcation lines of different nemat-
ics. In Fig. 4 the experimental points lie on average about
25% above the theoretical curve, and the lower hysteresis Once the critical Rayleigh numbers were measured, a de-
limit is further below the bifurcation line than we found for tailed analysis of the patterns could be undertaken. At first
5CB. we will characterize the Hopf bifurcation fdr below h;.

The equilibration times after each temperature step use8ince in that field range the bifurcation is subcritical, we had
by SF were 30 min, which is a factor of six to ten shorterto use the small-amplitude transients to determineand
than those of our experiments. In addition the temperatur@_ . Figure 5 shows images from cell 5 that are characteristic
steps of 5'_: were a factor of two larger than ours, yielding &f these patterns. They were taken at the tirfiesunits of
difference in the average rate of change of the temperature ¢f — 383 s) indicated in each figure after the pattern initially
a factor of 12 or more. Lookmg for an explanation of the pacame visible. This typically occurred aralit h aftere
difference between the experimental and theore®are- 5 raised from below zero to around 0.015. Inspection of
\{ealed '|n.F|g. 4, we conducted one run with equlllbrl"‘t'onsuccessive images revealed that the transients could be either
times zlm|I?r to th_os:of SFA but ustl)ng our 5ChB samplel. It(t:[aveling or standing waves, sometimes with both occurring
gave .t € plusses In Fig. 3. As can be seen, t ese results &P different locations in the same cell. In the top left image of
not differ significantly from the data taken with our usual _. LT : . .

Fig. 5, a location is indicated at which a time series of the

pixel intensity was acquired. This time series is shown in

B. Hopf frequency and critical wave vector

4000 Fig. 6 along with its corresponding power spectrum. The
length of the time series was limited by the rapid growth of
3000 | the pattern to its finite-amplitude steady state. Because of
« this, only a small number of periods could be obtained before
the finite-amplitude state was reached. Thus to avoid errors
2000 associated with incommensurate sampling, the data were
windowed before its Fourier transform was evaluated. This
1000 process was repeated at several pixel locations in the cell.

0 20 40 60 80 The signal from the second harmonic was often found to be
stronger than that from the fundamental. Thus it was used to

FIG. 4. Results forR, and Ry from Ref.[20] obtained with ~ calculate the frequency. The frequencies at different loca-
MBBA. The theoretical curve foR, was computed from typical tions generally were within 1% of each other, and were av-
fluid properties of MBBA[26]. eraged to determine the critical Hopf frequenay.
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FIG. 8. The azimuthal average of the time-averaged structure
factor{S(k)) of the travelling/standing wave transientshat 32 for

(O]

;)3 cell 5. The mean wavenumber calculated from the solid circles was

g used as the critical wave number.

<

g Figure 8 shows the azimuthal averag&k)) of (S(k)) for

o the run ath=32. We used a weighted average of the three
‘ , ‘ points nearest the peak of the second harmonicSgk)) to

0 10 20 30 40 calculatek. .

Frequency Figure 9 displays the results fég for all h together with
FIG. 6. The upper figure is the time series of the pixel intensitythe theoretical analysis. _Fd“<,h0t the me_asured critical
at the location shown in the top left image of Fig. 5. The lower WaVe number of the transients is systematically smaller than
figure is the power spectrum of that time series. The mean freth€ theoretical one. When the codimension-two point is ap-
quency calculated from the solid circles was used to determine thBroached, the experimental wave numbers make a smooth
Hopf frequency. rather than discontinuous transition to those associated with
the stationary bifurcation, whereas the theory predicts a 7%
d discontinuity ofk. ath. The reason for these discrepancies

The dependence updnof the measured, is compare )
with theory in Fig. 7. The arrow indicates the location of the!S @S yet unknown. Aboyect, the agreement between the
experimental and theoretical wave numbers is excellent.

theoretical codimension-two point while the dashed line rep- . I

resents the experimental determinationhgf. As can be AS shown exg)llcnly forR; in Fig. 2, R;, ¢, andk, are

seen, away from the codimension-two point the agreemerﬁrOportlonaI toh* for smallh.

with the measurements is excellent. In accordance with ) o

theory, the experimentab, changes discontinuously to zero C. Nonlinear state below the tricritical field h.

ath, above which the bifurcation is stationary. Because of the subcritical nature of the bifurcation tor
By evaluating the Fourier transforms of images such as<h, a finite-amplitude state develops directly at onset. The

those in Fig. 5, the critical wave numbky of the patterns  time dependence and spatial structure of this state are very

could be measured. The transforms were based on the centegfferent from that of the small-amplitude transient state. The

parts of the images by using the filter functid(r)={1 first two rows of Fig. 10 show typical images of the patterns

+cog (m)(r/rg)]}/2 forr<roandW(r)=0 forr>r,. Here  from cell 5 that are characteristic of the fully developed flow.

r, was set equal to 85% of the sample radius. Time averagFhey are from a single experimental run with constant exter-

ing the square of the modulus of the transforms over thewal conditions. They were taken at the times indicated in

length of the time series yielded the structure fa¢®(k)).

Y
!

o
>

50 60

a1
1<)

0 10 20 30
" FIG. 9. The characteristic wave numbers of the observed pat-
FIG. 7. The Hopf frequencw, as a function ofh. Open and terns as a function ofi. Circles: The wave number of the small-
filled circles are for cells 4 and 5, respectively. Open squares are famplitude transients. Triangles: The wave numkgiof the fully
cell 6. The solid line is the theoretical prediction far,. The  developed spatially and temporally chaotic flow, as measured close
dashed ling(arrow) indicates the location of the codimension-two to the onset of such flows. Open and filled symbols were obtained
point as found experimentallitheoretically. in cells 4 and 5, respectively.
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FIG. 11. A temporal succession of images during the transient
leading from conduction to convection whAA was raised slightly
aboveAT, for cell 5. The field wash=50. The numbers are the
elapsed time, in units df,, since the threshold was exceeded.

straight parallel rolls with a wave number that was smaller
thank.. However, these straight rolls turned out to be un-
stable to a zig-zag instability. In the end, this instability led
to the spatially and temporally disordered pattern as shown
FIG. 10. Top two rows: a sequence of images taken with conin Fig. 10. Thus, we see that a secondary instability led to a
stant external conditionsh=50, €=0.014) for cell 5. The time  chaotic state rather than to a new time-independent pattern.
elapsed since was raised from below zei@ units oft,=383) i Thjs phenomenon most likely is similar to the one encoun-
given in the top left corner of each image. Bottom row: The struC-tared in very early experiments on spatiotemporal chaos us-
ture factor of two of the images shown above, and the average %g liquid helium [27,28, where ordinary RB convection
the structure factor of 75 images spanning a time interval of, 724 ecame chaotically time dependent, most likely because the
The §tructu_re factor was obtained using a Hanning window, ancgecondary skewed-varicose instabi[;ag] was crossed.
thus is dominated by the patterns near the cell center. Heat-transport measurements of the fully developed flow

each image, in units df =383 s, which had elapsed sinee are shown in Fig. 12 for several field values as a function of
g€, N ' P €. They illustrate the evolution with of the hysteretic na-

?;?s l())(?(iﬁer?jled dg\c/)g?obgldogosvers%:sv%gli:lré-rglzrcgr:\éegg??ure of the bifurcation. As can be seen also in Fig. 3, the
Y develop: gula hysteresisge,| increased withh for h<h,, from about 10% at
pendence, with typical time scales around 100 times longer

; 0 ; .
than the inverse Hopf frequencies of the transients. One catrrfe low fields to nearly 25% close to the codimension-two

see that the “chaotic” behavior is associated with the for-pomt' Above t_his point the hy_s’;eresis_decreased and sug-
mation of defects and the continuous reorientation of th gf;\?vdfct)??ni(ésgequﬁ :goautt:lr(]:gt’lﬁilrit?gall?tren%r? 59 (see
convection rolls. This continuous reorientation of the rolls is When the Nusselt numbers in Fig. 12 arge lotted against
evident in the rightmost image in the bottom row of Fig. 10 9. P 9

(labeled “Avg”). It shows the time average of the structurethe Rayleigh numbeR, they fall on or approach a single

factor. The average involved 75 images taken over a totaﬁnu:xz ::r;]c;ec);:it(a: nsdtz?é gﬁéqufTé?eiEg%?sgs;JSSi;haecr%zc\éeﬁggﬂ
time period of 724, (over three days It is seen to contain yvig y

contributions at all angles, consistent with the idea of a Sta_complete randomization of the director ~orientations,

tistically stationary process of nonperiodic pattern evolutionregardless oh. In that case one would expect that the sys-

and with the expected rotational symmetry of the system?em should behave approximately like an isotropic fluid,

Similar results for cell 4 have been shown previoyd]. with .an e.lveraged Conq_UCt'V'Wa"g:(zM +l‘ ”)/_3' Thus we

Whenh was increased above,, the nature of the pattern Plot in Fig. 13 a modified Nusselt numbgr given by the
at first did not change noticeably. For instance, as evident if@tio of the effective conductivity of the convecting state to
Fig. 9, the characteristic wave number of the patt@mde- Mavg @ @ function ofR,,q, whereR,,q is computed using
noted by the trianglésemained close to 3.4 fdr<55. Over ~ Kavg= Mavg/PCp in Eq. (3) rather thanc. At all but the
this field range the patterns of the fully developed flow lookhighest fieldswhere the primary bifurcation is supercritigal
similar to those illustrated in Fig. 10, i.e., they exhibit spa-the data reach the common curve. At sni, this curve
tiotemporal chaos. extrapolates toV=1 nearR,,=1708 (the cross in the fig-

It is instructive to examine the transients that lead fromure), which is the critical Rayleigh number of an isotropic
the small amplitude to the finite-amplitude statistically sta-fluid. An analogous behavior has been observed in binary-
tionary state. This is done in Fig. 11. Here the number inmixture convection with negative separation ratis[30],
each image gives the time, in unitstgf, which had elapsed where the bifurcation is also subcritical. In that case the con-
since AT was raised slightly1.4% aboveAT.. At t=4.7  vective flow achieves thorough mixing of the concentration
small-amplitude transients like those in Fig. 5 are evident irfield and A\ approaches a curve that is independeniofin
part of the cell. Byt=9.4 these had filled the cell and grown both cases the mixing achieved by the flow can persist be-
to a saturated amplitude. At this stage they formed nearlgause of the existence of a slow time scale, namely, that of
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14 o5 ‘ T T ] data are forh=15 (open circley 25 (solid circleg, 35 (open
! squarey 45 (solid squares 50 (open triangles and 55(solid tri-
12} e ) angles. The diamonds are fdn= 64, which is in the supercritical
10.0.00-.-.-.-‘..o!!.’.‘e'e.oo.o.o: ________ region. Here the solid diamonds are for the hexagons or rolls, which
s X form supercritically, and the open ones are for the chaotic finite-
141 15 ‘ ‘ f : amplitude state, which forms via a secondary bifurcatiese Fig.
1ol X | 19 below. The cross corresponds to the critical Rayleigh number
' I R.=1708 of an isotropic fluid.
1leoee0eee ------ 000 -
(A . . . .
03 o2 ’_;1. 5 oA the patterns are described and the corresponding bifurcation
' ' AT/AT 1 ’ diagram is given. Further subsections deal with the precise
-

determination oh, and with hexagons observed near thresh-

FIG. 12. Nusselt-number measurements for cell 5 illustrating theoId for h>h,.
variation of the size of the hysteresis loop between conduction and
convection withh. The number in the upper left corner of each plot
is the fieldh. Open circles were taken with increasing and solid  From the measurements of the Nusselt nunisee Fig.
circles with decreasing\T. The arrows show the values ef  12) there is clear evidence of a tricritical fiel, above
=Rs/R.—1. which the primary bifurcation is supercritical. For instance,
director or concentration relaxation. for h=60, measurements @ revealed no hysteresis at the

Further support for the idea that the chaotic flow in somePrimary bifurcation and within our resolutia grew con-
respects can be approximated by isotropic-fluid convection idnuously from one beyondT,. This is exemplified for cell
found in Fig. 9, where foh=55 the wave vectorériangleg 2 andh=63 in Fig. 14. The opeisolid) circles correspond

are independent dfi and much closer to the critical value t0 the stable states reached by increadibecreasing AT
ki°=3.117 than to the critical valuds(h) of the anisotropic  [33]. This behavior of\ stands in sharp contrast to that
system(circles in Fig. 9. Exact agreement witki®° would of ~ Shown in Fig. 12 for lower fields. .
course not be expected even for a genuine isotropic fluid Besides the Nusselt number the analysis of the patterns
because of the finite flow amplitude and various wavedives important additional insight in particular with respect
number-selection processes.

Lastly we note that an extrapolation of the data in Fig. 13 1.08 ' 3
to V=1 and Ravg= 1708 yields an initial sIop@Sl of N—1 b
=~Sl(Raw_{1708— 1) of about 0.6. For a laterally infinite sys-
tem of straight rolls in an isotropic fluid with a large Prandtl
number one expect; = 1.43[31]. However, experiments in
finite systems with modest aspect rati®&?] have always
yielded smaller values, usually in the range of 0.6 to 1. Par- Jo
ticularly when many defects are present, as in our case, one 1 e 200@® 88— - . |
would expect the heat transport to be suppressed relative to 001 0 001 002 003 o004
that of a perfect straight-roll structure. e

1. Nusselt numbers and patterns

Nusselt Number
- -
=] o
> »
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!

FIG. 14. Nusselt-number measurements lier 63 and cell 5
illustrating the supercritical nature of the bifurcation characteristic

This section is devoted to the phenomena that occur neaif the high fields. Open circles were taken with increasing and solid
the tricritical field h=h,. At first the Nusselt numbers and circles with decreasingT.

D. Tricritical region and beyond
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FIG. 15. Bifurcation diagram in the region of tHe-h plane
close to the tricritical point. Solid circles: primary bifurcation. Solid
triangles: Rs. Solid squares: hysteretic secondary bifurcation to
chaotic convection. Shaded areas labédgd 3.4, 3.6, and 3.9 cor-
respond to chaotic regimes with different mean wave numbers. The
wedge-shaped area labeled Rolls/Hex shows the parameter range
over which time-independent convection is stable. For cell 5, the
pattern is hexagonal in this entire region. For cell 6, the pattern is
hexagonal in this region for<0.015. For largek but still in this 1 s ! . l

region it consists of time-independent rolls. 2 4 6 8 10
time (5 hrs)

Nusselt Number

to secondary transitions. In Fig. 15 all the available informa- FIG. 17. Nusselt-number measurementsHer61 in cell 5. The
tion has been condensed in a bifurcation diagram for the&pper figure illustrates the dependence of the Nusselt number on
vicinity of the tricritical point. The dotted line indicates,, where the transition from hexagons to
At first we will focus on the wedge labeled Rolls/Hex rolls occurred whem\ T was increased. The lower figure illustrates
where time-independent convection is stable. For both cell Bhe dependence of the Nusselt number on time. Time is measured in
and 6, a seemingly supercritical primary bifurcation led to aunits of 5 h, i.e., the time between stepsein
hexagonal pattern. For cell 5 this pattern is shown in Fig. 16.
The range ok over which the hexagons were stable differedconstant fo a 5 hperiod at each of the eleven successively
in the two cells. In cell 5, hexagons remained stable up tdncreasing values. The data show thats steady below and
R,(h) (solid squares in Fig. 25or the entire range dfi. At  time dependent above,(h). For h=75 the discontinuity in
Rn(h) a transition to a spatially and temporally chaotic roll A’was no longer pronounced, but a transition to time depen-
pattern with a lower characteristic wave number occurreddence still occurred a¢,(h). Thus, depending on the field,
For h<75 this transition was distinguished by a jumpAf  either of these two indicators was used to determine the lo-
as well as the onset of time dependence\Gfas illustrated cation ofe,(h). In the thicker cell 6, a transition from hexa-
in Fig. 17. The upper figure gives the steady-stafeand  gons to rolls occurred near=0.015, independent of field
shows the jump a&,=R,/R;—1. The lower figure is the strength. This transition was not associated with a measur-
time series of\ obtained in the same run. Heeewas held able change in the wave number, a jumpAf or a time
dependence of\. A further increase ofe again led to a
transition ate,(h) from steady rolls to the chaotic state, con-
sistent with the cell 6 experiments. The results &g(h)
obtained in cells 5 and 6 are shown in Fig. 18 as circles and
triangles respectively.

0.15

0.1

€n

0.05

0 . s . . \
55 60 65 70 75 80
h

FIG. 18. Values ofe,(h) where a transition to a spatially and
temporally chaotic state occurred. Circles and triangles were ob-

FIG. 16. Image of the hexagonal flow in cell 5 for=65 and  tained in cells 5 and 6, respectively. The lines represent a fit of a
€=0.01. The pattern was essentially the same over the entire exigjuadratic polynomial int{/h,—1) to the data. The fits extrapolate
tence range of hexagons. to zero ath,,=58.3+0.7 for cell 5 anch,=58+3 for cell 6.
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FIG. 19. Nusselt-number measurements Ifor64 in cell 5. FIG. 20. The dependence dnof the reciprocal of the initial
Open circles were taken with increasing and solid circles with deslopeS; of the Nusselt number as obtained from a fit of the data to
creasingAT. The dotted line indicates,, . Eq.(9). The open circles are 3{}, for cell 5, and the filled ones are

1/S,, for cell 6. For cell 5, data over the rangec@< e, were used,

On the basis of the usual Landau equation for a tricriticaPnd the pattern was hexagonal. For cell 6, data over the range
bifurcation, one would expect the hysteresis to grow gradu9-015< e<e, were gsed, and the pattern wag one of rolls. The solid
ally ash is reduced below,. However, within our resolu- !in€ represents a fit of a quadratic polynomial ilf,—1) to the
tion this was not the case and a hysteretic primary bifurcae!l 8 Si, data. The fieldn,=57.2-2.6, where 13,, for cell 6
tion to a chaotic state occurred immediately below. extrapqlates to zero, is |nterpreted to be the trlcr'ltlcal pomt.. The
Indeed, the secondary bifurcation lieg(h) for h>h, met theoretical results for & , are given by the dashed line. They yield

th - bif tion line ah. withi . tal a tricritical point ath{"=51. The theoretical results for 3y, are
G_} primary biturcation liné t_WI _In experimental reso- given by the dash-dotted line. The location of the codimension-two
lution, as can be seen already in Fig. 15.

. AR point is given by the solidexperimental and dashedtheoretical
It is shown more explicitly in Fig. 18, where the range  ghort vertical lines.
of time-independent patterns vanishes near58. Fitting a

quadratic polynomial in {/hy—1) to ey(h) yields hy In order to compare the theory with the measurements

=58.3£0.7 (.Ce" 9 apd_hn=58i3 (cell 6 for the f'e.ld aboveh,, we calculatedS,;, using the properties of 5CB.
wheree, vanishes. Within error, these values agree with thel’he results for 1. . are shown as a dashed line in Fig. 20
1r . .

Eggg“t%il Eeeldt Zgg!gﬁ%g%r? tz:zts.:)onpl?ogihhe '.\éussegrzgmberThere is quite reasonable agreement with the experimental
X . iturcat ¢ IS supercrit data forh=60, particularly when it is considered that the

cal b'“r']t ;P:efamplltttjde aéconstab(()j d"’eb'fges ?Sh aP- intial slope of NVin finite systems usually is smaller than the
proachesi, from above. SINCe secondary DIturcalions 0CCUMy, o atical value for the infinite system. However, the theory
at finite values of the amplitude, we expegi(h) to vanish

. . yields a tricritical field h{h= 51, which differs significantly
at h;. Therefore thee,, measurements provide a relatively ) . o
i ! I ) from the experimental estimates. We note that this difference
precise lower limith,=57.6 for the tricritical field.

The secondary bifurcation at is stronalv hvsteretic. As is in the same direction as and somewhat larger than the
: ondary h gly ny : corresponding one for the codimension-two point. We have
illustrated in Fig. 19, wherr was decreased frore=¢,, a

transition back to hexagons did not occur. Instead, the cha® explanation for this difference.

otic state persisted to values ef slightly below zero, at
which point the conduction state was reactisele also the
solid triangles in Fig. 1b In a separate section we will come  In this section we will discuss in more detail the hexago-

3. Hexagons

back to the hexagons. nal patterns. Hexagonal patterns at onset may be attributable
to departures of the physical system from the Oberbeck-
2. Determination of the tricritical point BoussinesqOB) approximation18,19, i.e., to a variations

of the fluid properties over the imposed temperature range.
For isotropic fluids it has been shown that non-OB effects
lead to hexagons at a transcriti¢aystereti¢ primary bifur-
cation [19,21]. Below onset, fore,<e<0, both hexagons
and the conduction state are stable. Above onset, hexagons
are stable for &ce<e,. For ¢, <e< ¢, hexagons and rolls

are both stable, while foe= e, only rolls are stable. When

As h approaches the tricritical point from above, the ini-
tial slopeS;, of N for rolls is expected to diverge as /(
—hy). For cell 6, we estimated,,(h) from data for e
=0.015 where rolls were observed. At a givenS,;, was
determined by fitting the polynomial

_ 2
N=1+Se+Sy€ 9 the thickness of the fluid layer is increaseédr is reduced
and thus departures from the OB approximation become
with e=AT/AT.—1 to the data. The parametekJ ., S, ,, smaller. Thus the range efover which hexagons are stable

andS,, were adjusted in the fit. Figure 20 shows the depenis reduced when the thickness of the fluid layer is increased,
dence of 13, uponh as solid circles. The fitting procedure as seen in the experiment by comparing cells 5 and 6.

did not yield highly accurate values because the Nusselt data A stability analysis of RBC with non-OB effects in a ho-
for €<0.015 had to be excluded; thus the error barsSgr  meotropically aligned NLC has not yet been carried out and
are relatively large. The line is a fit of a quadratic polynomialwould be very tedious. Thus, in order to obtain at least a
in (h/h—1) to the results for B, ,(h). This fit indicates the qualitative idea of the expected range of stable hexagons, we
tricritical point to be ath;=57.2+2.6. used the theoretical results for the isotropic fluid with the
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FIG. 22. The critical wave number as a function oh?/The
solid line was calculated using the parameters of R22]. The
open triangle ik, .. from Eq.(13). The solid triangle is the many-
mode numerical result fdk. ... The vertical bars indicate the loca-

FIG. 21. The critical Rayleigh number as a function oh’/  tion of the codimension-two poiritight bay and the tricritical point
The solid line was calculated using the parameters of [R&. The  (left bar. The dashed line shows what happens to the theoretical

open triangle iR .. from Eq.(13). The solid triangle is the many- curve if the viscositya, is increased by 7.5%the data fork,
mode numerical result foR; ... The solid circles are from cell 5, remain unchanged

and the open squares are from cell 6. The vertical bars indicate the

location of the codimension-two poifitight bap and the tricritical  gther. According to the Landau moddl3] the steady-state
point (left bar). The plusses, crosses, and dashed line show WhaémplitudesAi are determined by

happens to the data and the theoretical curve if the viscasitis

increased by 7.5%.

3000
0

A+ Lb(AZ+A2)—g A3 - AZ— A2=0
fluid properties of 5CB. The values af,, etc. are deter- At ZD(A+AY) ~ AT~ G1MA ~ B AL (10)

mined by a parameteP, which was defined by Busgé9]

and is given by P=3% yP, with yo=—Aplp, 7,

=Aal2a, y,=Avlv, y3=ANN\, andy,=ACp/Cp. Here  and the corresponding cyclic permutation fer2,3. Since
p is the density« the thermal expansion coefficient,the  all amplitudes are expected to be equal in hexagoks (
kinematic viscosity\ the conductivity, andCp the heat ca- =A,=A;=A), one has

pacity. The quantitied p, etc. are the differences in the val-

ues of the properties at the bottghot) and top(cold) end of

the cell. Forx we used\ |, and forv we useda,/2p. The eA+bA?—(g+29)A3=0, (11)
coefficientsP; in the equation fof® are given by BussgL9].

However, here we use the more recent reqd# for large

Prandtl numbersP,=2.676, P;=—6.631, P,=2.765, P3  where g is the self-coupling coefficieny,; and g is the
=9.540, andP,=—6.225 whereP; differs significantly  cross-coupling coefficient;,=g,;. Because of the term
from the earlier calculation. bA2, the bifurcation is transcritical and thus hysteretic. How-
At the fields where the hexagons were observed, the tenver, as we discussed above and as is shown, for instance, by
perature difference across cell @ell 6) was close to the data in Fig. 14, this effect is not resolved in the experi-
5.05°C (2.07°C). At these temperature differences, we obment because the coefficigmtwhich is determined bfp) is

tained P=—1.5, e;=—1.7X10 %, ¢=15x10"% ande,  too small. Thus we neglect the tel?, and have to a good
=5.3x10 " for cell 5. For cell 6 the values arB=—0.6,  approximation

€,=—2.8X10 %, ¢=2.5x103, ande,=8.7X 10 3. From

these estimates, it follows that the hysteresis of sjzis too )
small to be noticeable in either cell with our resolution. The N-1=3A%=
largest value ofe at which hexagons could exist in cell 6
wquld bee=8.7X ;O 3, .However, we observe_ hexagons t0 ¢ the tricritical pointg vanishes ag=go(h—h,). How-
exist to nearly twice this value. If the same is true for the . ~ .

thinner cell, the hexagon-roll transition attributable to ever, there is no reason why should van|s~h also alt; .
non-OB effects should happen at a valueeogreater than ~ Thus, one would expect the slofg,=3/(g+2g) of V' near
en(h) for the field range over which the experiments weree=0 to remain finite ah; and equal to 3/g. To test this
performed. Thus, instead of leading to a time independenitea, we fitted\ for cell 5 over thee range where hexagons
state, as observed in cell 6, the hexagon-roll transition isvere observedi.e., up toe,) to an equation like Eq(9).
preceded by a transition to a state exhibiting spatio-temporabince data quite close to threshold could be used, the results

=. 12
9425 (12)

chaos afe,, . for S;, are much more precise than those for cell 6. They are
The hexagonal pattern may be regarded as a superpositigiven in Fig. 20 as open circles. One can see th&fLis
of three sets of rolls with amplitude&;, i=1,2,3, corre- non-zero at,. It extrapolates to zero ne&r=>53, which is

sponding to the three basis vectors at angles of 120° to eackell below h,=57.2+2.6. Unfortunately the relatively large
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one-mode result. One can see that only the viscosities enter
into R .., and not the elastic constants. This is so because
the director is held rigid by the fiel®R. .. is larger than the
isotropic-fluid value because of the additional viscous inter-
action between the flow and the rigid director field.

In the high-field limit, we obtain

R.=R¢.+R1/h*+0(h™%). (14

The coefficientR; has not been calculated in detail, but is
proportional tokgs . The fact that at order tf elastic con-
stants enter suggests the beginning of some director distor-
tion by the flow.

In Figs. 21 and 22 we show the experimental data and
theoretical results as a function lof 2. The one-mode high-
field limits R; .. and k. .. are shown in the figures as open
triangles. The corresponding numerical many-mode results
are given as solid triangles. The experimental datdfoand

FIG. 23. Time sequences of the spatially and temporally chaotik. are consistent with the expected dependencé obut
flow for R=4000 and at different values bffor cell 5. The images respectively fall about 4% above and 1% below the calcula-
in each row were taken at the field indicated in the leftmost imagetion. The data foR. andk, at the highest experimental field
Time increases from left to right. Images were taken in one houh=80 are already within about 6% and 1%, respectively, of
intervals. The wave numbers of the patterns d&e47: k,  the infinite-field value. Thus it seems unlikely that qualita-
=3.4, h=56: k,=3.6, h=57.5: k,=3.9. tively new phenomena could be discovered by measurements

at even higher fields.
uncertainty ofh; andS, , prevents the accurate determination ~We examined whether the small difference between the
ofE]. At h;, we find§=3/251,hz0.3. With increasindh, 6 theory and the experiment could be removed by small adjust-
also increases. For instance, the data in Fig. 20 suggest thaxents in the values of the fluid properties. We found that an
523/25“1_1/231’;0_8 forh=66. increase by 7.5% of, yielded the plusses and crosses for

The experimental results fory,, cannot agree quantita- the data in Fig. 21 and the dashed lines in Figs. 21 and 22

tively with the theory because we already know thftis (the data fork in Fig. 22 are not affected by changing).

lower than the experimental value. Nevertheless we calcuThe adjustment ot, produced an excellent fit for botk,

lated 18,,,, and give it in Fig. 20 as the dash-dotted line. andR;. However, it spoiled the excellent agreement Ryr

We see that the relationship betweeS,}/and 15, , is quite along the oscillatory branch below the codimension-two
similar in theory and experiment ‘ ! point shown in Fig. 3 and did not significantly reduce the

difference between calculation and experiment kgr at
S smallh which is shown in Fig. 9. Various other attempts to
E. The high-field limit of R; and k. adjust the fluid properties used in the theoretical calculations

It is highly probable that there exists a high-field regimeWere unsuccessful in yielding improved overall agreement
where the convection phenomena become independent of tigtween theory and experiment over the entire field range.
field since the director is then frozen in the homeotropic
configuration. It is instructiv_e_to exar_nine_whether the experi- F. Nonlinear states at high fields
mental data extend to sufficiently high fields to fully reveal : , ) . )
this behavior. Building on the results of FDFKO], one can Beyond the codimension-two point the finite-amplitude

show that in a one-mode approximation the neutral curve iflow was split into three regions distinguished by their char-
the limit h— is given by acteristic wave numbells,=3.4,3.6 and 3.9. These regions

are shown in Fig. 15. Figure 23 shows some characteristic
patterns. Qualitatively the patterns appear similar, each ex-

(N, /)\”)k2+ 2 (21 27mp  2ay hibiting spatiotemporal chaos. The transitions between these
Rc,w(k):—z—Zkzl — Ik Ty + Ty + N state depended on bothand R. They were determined by
1

measuring the change ky, ash was varied at a given Ray-

42M2  ,2m leigh number. As already mentioned above, to our knowl-
+k a—4+b a—4 . (13 edge there are no theoretical predictions for these patterns.
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